Stationary Processes
نویسنده
چکیده
Stationary processes are stochastic processes whose probabilistic structure is unaffected by shifts in time. According to the interpretation of the term “probabilistic structure”, one distinguishes weak sense stationary processes, where only the covariance structure is supposed to be invariant, and strict sense stationary processes, for which all finitedimensional distributions have to remain the same under shifts of time. Some important basic properties are discussed, and the spectral representation of a stationary process and its relation to questions of linear prediction are studied.
منابع مشابه
Second Moment of Queue Size with Stationary Arrival Processes and Arbitrary Queue Discipline
In this paper we consider a queuing system in which the service times of customers are independent and identically distributed random variables, the arrival process is stationary and has the property of orderliness, and the queue discipline is arbitrary. For this queuing system we obtain the steady state second moment of the queue size in terms of the stationary waiting time distribution of a s...
متن کاملPeriodically correlated and multivariate symmetric stable processes related to periodic and cyclic flows
In this work we introduce and study discrete time periodically correlated stable processes and multivariate stationary stable processes related to periodic and cyclic flows. Our study involves producing a spectral representation and a spectral identification for such processes. We show that the third component of a periodically correlated stable process has a component related to a...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملSHIFT OPERATOR FOR PERIODICALLY CORRELATED PROCESSES
The existence of shift for periodically correlated processes and its boundedness are investigated. Spectral criteria for these non-stationary processes to have such shifts are obtained.
متن کاملThe Stationary - NonStationary Process and The Variable Roots Difference Equations
Stochastic, processes can be stationary or nonstationary. They depend on the magnitude of shocks. In other words, in an auto regressive model of order one, the estimated coefficient is not constant. Another finding of this paper is the relation between estimated coefficients and residuals. We also develop a catastrophe and chaos theory for change of roots from stationary to a nonstationary one ...
متن کامل